A Simple Method for Citation Metadata Extraction
using Hidden Markov Models

Erik Hetzner
California Digital Library
415 20th St

_Oakland, CA 94720
erik.hetzner@ucop.edu

ABSTRACT

This paper describes a simple method for extracting meta-
data fields from citations using hidden Markov models. The
method is easy to implement and can achieve levels of preci-
sion and recall for heterogeneous citations comparable to or
greater than other HMM-based methods. The method con-
sists largely of string manipulation and otherwise depends
only on an implementation of the Viterbi algorithm, which
is widely available, and so can be implemented by diverse
digital library systems.

Categories and Subject Descriptors

H.3.7 [Information storage and retrieval]: Digital Li-
braries—systems issues

General Terms
Algorithms

Keywords

Citation Management, Metadata Extraction

1. INTRODUCTION

Digital libraries are often confronted with the problem of
turning a textual citation into a more structured reference.
A structured reference can be used to aid the tasks of cita-
tion grouping, and also mapping of the citation graph, which
can provide a basis for data-mining of research papers. Al-
though it is trivial for a human to divide a citation into its
constituent fields, it is not an easy task to make a computer
do the same. The grammars used to produce citations are
complex, varied, and not known in advance. Various rule-
and knowledge-based [13, 7, 9], and machine-learning tech-
niques [2, 12, 18, 22, 6, 4, 11] have been developed to extract
metadata from citations. This paper describes a method
for extracting structured references from plain text citations
which is relatively simple and achieves acceptable precision

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

JCDL’08, June 16-20, 2008, Pittsburgh, Pennsylvania, USA.

Copyright 2008 ACM 978-1-59593-998-2/08/06 ...$5.00.

and recall. Additionally, we feel that this method has poten-
tial for improvement. The engine of the method is a hidden
Markov model which is learned by training on a small (less
than 500) set of citations which have been marked up by
hand.

2. CITATIONS AND REFERENCES

We use citation to mean the free-form string, referencing
a particular bibliographic item, which a human can use to
locate that item. A reference is the more abstract struc-
ture which can be used, in combination with a grammar,
to generate a citation. Our model of a reference, which we
attempt to recover from a given citation, is of a set of la-
beled fields, each of which is repeatable. Each author, for
instance, is represented by a field labeled “author” which
contains a string used to identify that author. This model
is somewhat more strict than the BibTEX-influenced models
which do not allow repeated fields and instead combine all
authors into a single labeled field.

3. HIDDEN MARKOV MODELS

A discrete-emission hidden Markov model (HMM) [5] is a
probabilistic model in which transitions between a finite set
of states are accompanied by the emission of a symbol from
a finite alphabet. They are described as “hidden” because
the emission sequence is known, and from this sequence the
task is to determine the state sequence which generated it.

An HMM begins in some starting state, gs, and then tran-
sitions to a new state g2, with probability P(gz2|gs), in the
process emitting a symbol ogs with a probability given by
P(os|gs). It continues in this way until it reaches an end
state qg, having emitted a sequence of symbols X.

The Viterbi algorithm [5] makes use of the Markov prop-
erty of an HMM (that the next state transition and sym-
bol emission depend only upon the current state) to deter-
mine, in linear time with respect to the length of the emis-
sion sequence, the most likely path through the states of a
model which might have generated a given sequence. The
Viterbi algorithm is widely known and used, and implemen-
tations of the Viterbi algorithm are available for many sys-
tems, including free implementations for Perl [10], Java [17],
C/C++/Python [1].

HMMs have been used in the past for digital signal pro-
cession, speech recognition, bioinformatics and information
extraction [5, 19, 14, 3, 21]. Although HMMs have been used
before for metadata extraction from citations [22, 6, 18, 4,
11], our method achieves comparable or greater accuracy
and does not depend on multiple HMMs, as in [6], a more

complex bigram HMM [22], or a modified Viterbi algorithm
[22]. It bears many similarities to [11], although developed
independently; however, it does not make use HTML tags,
and uses a different model, along with a reduced alphabet.
It seems to achieve greater or comparable precision and ac-
curacy to other HMM-based methods, although only [18]
records measurements against the data set that we used.

4. DEFINING THE MODEL

A discrete-emission, first-order hidden Markov model lies
at the heart of this method. An HMM is defined by the
set of states, the alphabet of symbols, the state transition
probability matrix, the emission probability matrix, and the
initial state probability matrix [5]. In our case, the set of
states @ is derived from the labels of fields that we wish
to extract from the citations. The alphabet of symbols ¥
is hand-built from individual words, word classes, punctua-
tion, and word features. The probabilities are derived from
training data.

4.1 The states

To build our set of states Q we begin with the labels of the
fields which we wish to extract from each citation. What la-
bel a field has depends upon the underlying reference model.
For instance, conference proceedings might be considered a
separate label from a book title, or they might be considered
the same. Some labels are used in certain sets of citations
but not in others. In our case we used the following labels,
present in the Cora dataset, with the addition of (issue)
number (which in the Cora dataset was subsumed under vol-
ume): author, booktitle, date, editor, institution, journalti-
tle, location, note, number, pages, publisher, techtitle, title,
and volume. In [20] it is noted that having one state per
label is not optimal, and we have found this to be the case.
We define two states in @) for each label: a “first” state and
a “rest” state. So in the case of the “author” label, we have
an ay state and an a, state. Other numbers of states were
tried, but having a first and rest gave the best results.

We further defined a set of “separator states”, which rep-
resent words and punctuation that are not part of fields,
but which act to differentiate fields. For instance, authors’
names are often separated by a comma “,” or the word “and”,
and the set of authors is often terminated by a period “.”,
which also indicates the beginning of the title of a paper.
The marks are not part of the labeled fields which we wish
to extract, but are generated by the citation grammar and
are intended to aid the reader in differentiating the parts of
a citation. In order to exploit them, we define a set of sep-
arator states between each pair of fields. For example, the
state which separates an author’s name and the title state is
the alt state. These separators states are non-active and do
not contribute to labeled fields, although they are used to
split repeated, adjoining fields with the same label. Finally,
we define a non-active terminating “end” state.

4.2 The alphabet

Selection of a useful alphabet, 3, is essential to accept-
able performance of a hidden Markov model. If we take
as our alphabet all words in the English language we end
up with a dictionary which contains many words which our
training documents will not contain, and we will be required
to use complicated smoothing mechanisms to obtain useful
probability matrices. Additionally, if we use the set of En-

glish words we will not exploit the relations between certain
words, such as the months of the year, to help our model
out. Instead, we have found it best to define a mapping of
tokens to a smaller alphabet of symbols. This alphabet is
composed of symbols which represent punctuation, particu-
lar words, classes of words, and word features.

We first define a set of symbols to represent various punc-
tuation, which in our method are considered to be individual
tokens. The tokens that we map from include the comma
«” period “.”, hyphen “-”, and so on. Each of these charac-
ters maps to one symbol. Unusual punctuation is mapped
to a single miscellaneous punctuation symbol.

Next we define a set of symbols to represent certain key
words. For instance, it is clear that the word “proceedings”
and the abbreviation “proc” are important key words which
can help identify conference proceedings. So we define a sin-
gle symbol to represent this particular word/abbreviation.
Other tokens mapped to a single symbol include “press”,
“university”, and “report”.

We further define a small number of word classes repre-
senting related words. For instance, it is clear that there
exists a relationship between the months of the year, so a
single symbol is defined to represent the months.

Finally, we define a set of symbols to match words features
for the words which have not yet been matched. These fea-
tures include an uppercase word, a lowercase word, a title-
case word, a string of numerals of length 4, and so forth.

4.3 Building the parameters

To build our model’s probability matrices we use fully
labeled training data. In this data each state sequence and
emission sequence is completely defined. To calculate the
transition matrices we use the method described in [20]. For
the probability of each transition from state g, to ¢, we
calculate:

c(gn — qm)
quQ c(gn — q)

where c(q — ¢') is the count of occurrences in the training
date of a transition from state ¢ to state q’.

We use the same method to define the emission probabil-
ities, P(on|gn), for each g, € Q and o, € X, and the start
probability, P(qs = g»n) for each g € Q.

P(gmlgn) =

4.4 Naive smoothing

Because some state transitions and some symbol emissions
will not be encountered in the training data, we will need to
smooth our data somewhat. We use a very naive method,
setting to a low constant (1077) the probabilities of events
which previously had zero probability. In order to ensure
that the sums of P(¢'|q) and P(c]|q) are 1 for all values of
¢ and o we subtract from the probability of all originally
non-zero probability events the value %1077 where n is the
count of originally zero-probability events and m the count
of originally non-zero-probability events. If we have a state
for which we have no training data for transitions or emis-
sions, we use the uniform distribution.

S. APPLYING THE METHOD

Having built our model, we now describe the method by
which a string of characters representing a citation is turned
into a structured reference.

Table 1: Precision and recall

Token Field Token (stripped) Field (stripped)
P R F1 P R F1 P R F1 P R Fq
author 98.0 989 984 880 90.6 89.3 995 996 995 940 96.8 954
booktitle 89.4 914 904 625 672 647 904 938 9211 708 76.1 73.4
date 942 973 957 899 943 920 96.7 994 98.0 946 99.3 96.9
editor 86.3 90.3 88.3 548 639 59.0 89.2 922 90.7 548 639 59.0
institution 61.2 882 723 444 571 500 619 929 743 667 857 75.0
journaltitle 888 706 787 884 745 809 890 73.0 802 884 745 809
location 765 690 726 568 568 568 792 760 776 73.0 73.0 73.0
note 295 66.7 409 333 500 400 341 750 469 333 500 400
number 95.8 100.0 97.9 955 100.0 97.7 957 100.0 97.8 955 100.0 97.7
pages 99.2 98.0 98.6 953 965 959 988 982 985 953 965 959
publisher 728 838 779 684 788 732 732 833 779 684 788 732
techtitle 93.2 953 943 75.0 75.0 750 931 93.1 93.1 75.0 75.0 75.0
title 987 955 97r.1 885 872 879 992 966 979 950 936 943
volume 925 754 831 918 763 833 961 817 833 959 79.7 87.0
all 934 933 033 833 849 841 943 944 0944 883 90.0 89.2
macro average 840 872 847 738 763 747 854 896 866 786 81.6 79.8
whole instance 45.8 45.8 65.5 61.3

5.1 Tokenizing a citation

The first step of transforming the given string of charac-
ters that make up a citation into a string of symbols is to
tokenize the citation. We consider as a separate token any
character in the Unicode punctuation category [8], with the
addition of few additional characters, including “+”, “|”, and
“7” which are not considering punctuation in the Unicode
standard. We further consider as a token any string of char-
acters not previously matched, separated from its neighbors
by whitespace. At the end of this step we have a token
sequence, (Wi, ..., Wn).

5.2 Processing tokens into symbols

For each of our emission symbols we define one or more
regular expressions which will can be used to map a token
to a symbol. For instance, the regular expression ~[Jjlan
(uary)? is one regular expression defined for the month
symbol. We apply, in order of precedence, this sequence of
regular expressions to each token from the token sequence
previously obtained, giving us the symbol sequence: (z1,
ceey Tn).

Because our mapping from tokens to symbols is one way,
we must retain our original token sequence in order to later
zip together the states with the original token.

5.3 Viterbi

At this stage we can pass our sequence of symbols (z1, . . .,
Zn) and our model, as built above, to our implementation of
the Viterbi algorithm. We use the Python bindings of the
GHMM [1] library for this step. The result is the sequence of
states, (q1, .- ., gn), most likely to have produced the symbol
sequence which represents our citation.

5.4 Joining the citation fields

Now we can zip the list of states obtained above with our
original token sequence, obtaining a sequence of state-token
tuples, ((gi,w1),...,(gn,wn)). These states can be trivially

joined into labeled fields by joining each token in the list
with the previous one, if the states represent the same label;
that is, are either a first or rest state for that label. These
tokens can be joined together with whitespace to obtain each
labeled field string.

6. SOME RESULTS

We tested our method against the Cora dataset of labeled
citations [16, 15], after reworking the data somewhat to fit
our model. These changes include: breaking the author and
editor fields into separate fields for each person; moving some
separator tokens between labeled states; correcting some er-
rors in labeling; and converting some text which was for-
merly marked as a note into labeled fields. We made these
changes to every entry in the set, and trained from the first
350 entries, testing against the final 142 entries.

We measured the per-field and per-token precision and
recall for each label. The results of this measurement are in
Table 1. The per-token measurements test the precision and
recall of each token marked with a label state. The per-field
measurements test the precision and recall for each joined
and labeled field.

Because accurate recovery of punctuation present in the
original citation may or may not be useful for a given task,
we also measured the per-token and per-field performance
after stripping out punctuation. For the per-token measure,
this meant ignoring all punctuation tokens when measuring
performance. For the per-field measure, after grouping the
results into labeled fields, we dropped any leading or trailing
punctuation before considering if fields were a match. Since
extra or missing punctuation at the beginning or end of a
field is a common error in our method, this improves the
performance with what may be a tolerable loss in accuracy.

At the bottom are the macro average, the total for all
fields, and the special “whole instance” measure. Whole in-
stance measures the percentage of references whose machine-
labeled tokens or fields completely match the hand-labeled

reference. With non-punctuation stripped data the whole
instance accuracy is the same per-token and per-field. With
the stripped data it is higher in the per-token comparison,
because in this comparison we ignore some non-equal punc-
tuation which might be used to split fields.

It is worth noting that Cora dataset is a very heteroge-
neous set of citation data, and that preliminary results with
this method tested against the more homogeneous health
sciences dataset used in [7] give whole instance accuracy
greater than 90%.

While these results are inferior to those obtained by the
use of conditional random fields in [18], we feel that there
may still be a place for HMM-based methods for citation
parsing, due to their relative ease of use, availability of im-
plementations, and possibility for improvement.

7. IMPROVEMENTS

It is certain that the symbol alphabet and the correspond-
ing regular expressions used to map from tokens to symbols
are suboptimal. Techniques could be used to optimize this
mapping. We suspect that the use of domain knowledge in
mapping between tokens and symbols would aid in accuracy.
For example, dividing words into common words and proper
names might improve labeling of authors and titles.

Our mapping from field labels to model states is likewise
crude. It would be useful to exploit some of the methods
described in [20] to build better models from the training
data.

The employment of a second-order HMM, and a suitably
extended Viterbi algorithm would likely also be an improve-
ment on the accuracy of this method.

8. CONCLUSION

We have shown that it is possible to achieve good results in
citation metadata extraction using hidden Markov models,
through a careful selection of states and symbols, reducing
the size of the symbol alphabet, using two states for each
label, and making use of separator states. The simple nature
of this method and the easy availability of Viterbi algorithm
implementations should allow digital library implementers
to employ this method in their systems.

Thanks to the anonymous reviewers for their valuable com-
ments. The code used to generate the results in this paper
may be found at:
http://purl.net/net/egh/hmm-citation-parser/

9. REFERENCES

[1] Algorithmics group. Max Planck Institute for Molecular
Genetics. GHMM: A LGPL-licensed hidden markov model
library. http://ghmm.sourceforge.net/, 2008.

[2] D. Besagni and A. Belaid. Citation recognition for scientific
publications in digital libraries. In Proc. of the First Intl.
Workshop on Document Image Analysis for Libraries, pages
244-252. IEEE Computer Society, 2004.

[3] D. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble: a
high-performance learning name-finder. In Proc. of the 5th
Conf. on Applied Natural Language Processing, pages
194-201, Washington, D.C., 1997.

(4]

(5]
(6]

(7]

(8]
(9]

(10]

(11]

(12]

(13]

[14)
[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

V. R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic
segmentation of text into structured records. In Proc. of the
2001 ACM SIGMOD Intl. Conf. on Management of Data,
pages 175-186, 2001.

E. Charniak. Statistical language learning. MIT Press,
Cambridge, Mass., 1999.

J. Connan and C. Omlin. Bibliography extraction with hidden
markov models. Technical Report US-CS-TR-00-6, Department
of Computer Science, University of Stellenbosch, Feb. 2000.

E. Cortez, A. S. da Silva, M. A. Gongalves, F. Mesquita, and
E. S. de Moura. FLUX-CiM: flexible unsupervised extraction
of citation metadata. In Proc. of the 7th ACM/IEEE Joint
Conf. on Digital Libraries, pages 215-224, Vancouver, BC,
Canada, 2007. ACM.

M. Davis and K. Whistler. Unicode character database.
http://www.unicode.org/Public/UNIDATA/UCD.html, 2008.

M.-Y. Day, R. T.-H. Tsai, C.-L. Sung, C.-C. Hsieh, C.-W. Lee,
S.-H. Wu, K.-P. Wu, C.-S. Ong, and W.-L. Hsu. Reference
metadata extraction using a hierarchical knowledge
representation framework. Decision Support Systems,
43:152-167, Feb. 2007.

K. Dejonghe. Algorithm::Viterbi. http://search.cpan.org/
“koen/Algorithm-Viterbi-0.01/1ib/Algorithm/Viterbi.pm, Nov.
2006.

J. Geng and J. Yang. AUTOBIB: Automatic extraction of
bibliographic information on the web. In Proc. of the Intl.
Database Engineering and Applications Symposium, pages
193-204. IEEE Computer Society, 2004.

M. Kramer, H. Kaprykowsky, D. Keysers, and T. Breuel.
Bibliographic meta-data extraction using probabilistic finite
state transducers. In Proc. of the Ninth Intl. Conf. on
Document Analysis and Recognition, pages 609—613. IEEE
Computer Society, 2007.

S. Lawrence, C. L. Giles, and K. Bollacker. Digital libraries
and autonomous citation indexing. IEEE Computer, 32:67-71,
1999.

T. R. Leek. Information extraction using hidden Markov
models. Masters, University of California, San Diego, 1997.

A. McCallum. Andrew McCallum’s code and data.
http://www.cs.umass.edu/ mccallum/code-data.html, 2005.

A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A
machine learning approach to building domain-specific search
engines. In The 16th Intl. Joint Conf. on Artificial
Intelligence, 1999.

R. A. Milowski. jHMM.
http://www.milowski.com/software/jhmm/, 2005.

F. Peng and A. McCallum. Accurate information extraction
from research papers using conditional random fields. In Proc.
of Human Language Technology Conf. and North American
Chapter of the Association for Computational Linguistics,
2004.

M. Perrow and D. Barber. Tagging of name records for
genealogical data browsing. In Proc. of the 6th
ACM/IEEE-CS Joint Conf. on Digital Libraries, pages
316-325, Chapel Hill, NC, USA, 2006. ACM.

K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden
markov model structure for information extraction. In
Workshop on Machine Learning for Information Extraction,
1999.

A. Viterbi. A personal history of the viterbi algorithm. IEEE
Signal Processing Magazine, 23:120-142, 2006.

P. Yin, M. Zhang, Z. Deng, and D. Yang. Metadata extraction
from bibliographies using bigram HMM. In Proc. of the 7th
Intl. Conf. on Asian Digital Libraries, LCNS 3334, pages
310-319, 2004.

